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An attempt is made to show that the Q-functions [Tollin, Acta Cryst. (1966) 21, 613] and the transla- 
tion function [Crowther & Blow, Acta Cryst. (1967) 23, 544] are virtually identical, and the modifica- 
tions to the translation function proposed by Crowther & Blow are discussed. 

The translation problem is the problem of determining 
the position in the unit cell of a known molecule, or 
known part of a molecule, once its orientation with 
respect to the crystal axes has been determined. A 
number of solutions to this problem have been pro- 
posed (Nordman & Nakatsu, 1963; Vand & Pepinsky, 
1956; Hoppe, 1957; Huber, 1965 and others). In par- 
ticular ToUin & Cochran (1964) (hereafter TC) pro- 
posed a set of functions, which they called Q-func- 
tions, which made use of the properties of the sum 
function (Buerger, 1959). Later Tollin (1966a) (here- 
after PT) proposed a modification of these Q-functions 
which allowed the determination of the position of the 
known group with respect to the individual symmetry 
elements of the space group of the crystal, in turn. 
Subsequently Crowther & Blow (1967) (hereafter CB) 
proposed a new solution to the translation function. 
The object of this note is to show that the Q-functions 
and the translation function of CB are virtually iden- 
tical. That the close similarity between these two func- 
tions is not immediately obvious is a result firstly of the 
different notations used by the authors and secondly 
of the fact that in PT the Q-functions have been ex- 
pressed in terms of the sum function while the trans- 
lation function of CB is explained in terms of the Pat- 
terson function. 

The translation function T(t), which has its largest 
value when t is the vector between two molecules re- 
lated by a symmetry element, is defined in CB by the 
equation: 

T( t )=  Z' IF(h)12Fm(h)F*(h. A) exp ( -2 rc ih .  t ) .  
h 

IF(h)l are the observed structure amplitudes and Fro(h) 
are the structure factors of the known group with 
respect to the local origin. The particular symmetry 
operation of the space group relates the point defined 
by the vector x to the point A .  x + d .  If there are n 
atoms in the known group having coordinates rj with 
respect to the arbitrary origin, whose position in the 
unit cell is So, then 

n 

Fro(h) = ~rf jexp(+2zcih .r j )=C+iS.  
j = l  

If, for the present, we ignore the scattering factors fj., 
then the translation function can be written 

T( t )=  _r iF(h)l 2_~ ~ cos [2nh. ( r j - A .  r j . - t ) ] .  
h ]=1  j ' = l  

In PT the vector R0 is defined as the vector which 
fixes the arbitrary origin with respect to the symmetry 
element and not the origin of the unit cell, it is con- 
venient therefore at present to ignore the vector d. 
Since, in the notation of CB 

t = A . s - s  

(CB Fig. 1), the above equation for T(t) can be written 

Z(s) = 22 IF(h)12 f~ cos {2nh. [r3"+ s -  A .  (rj, + s)]}, 
h / , / ' = 1  

which is identical with the expression for Q(R0) given 
in equation (2) of PT. Introducing the vector d merely 
shifts the origin of the function and corresponds to 
defining the vector R0 as the vector from the origin 
of the unit cell to the local origin as in TC. Introducing 
the scattering factors 3') corresponds to replacing the 
sum function, equation (1) of PT, by the alpha-syn- 
thesis (Ramachandran & Raman, 1959) and, as they 
show, this gives peaks in the same positions as the sum 
function, and, unless atoms of the structure have 
markedly different scattering powers, does not make 
a great difference to the function. 

The identity of the two methods is also seen by con- 
sidering the section of T(tztvtz) at tv=½ in the last 
paragraph of CB. Then, 

T(tz,½,tz)= S, X _r (_  1)elF(hkl)12 
h k l  

x {[C(hkl)C(hkl)- S(hkl)S(hkl)] cos 2n(htz+ ltz) 
- [C(hkl)S(hkl) + C(hfcl)S(hkl)] sin 2zc(ht~+ ltz)}, 

which is identical with the expression for Q(XoZo) of PT. 
Two modified translation functions are proposed by 

CB. The expression which they suggest for Tz(t), which 
is the translation function obtained by considering all 
the symmetry operations simultaneously, bears a close 
resemblance to the original Q(r0) defined in TC, where 
the point is made that 'when r0 has its correct value, 
the value of Q(r0) is simply the sum of the values of 
the Patterson function at positions which correspond 
to vectors between atoms in different groups.' The func- 
tion Tx(t) defined in CB makes use of the Patterson 
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function after the origin peak and the intramolecular 
vectors have been removed. This corresponds to an 
extension of the point made in PT that the origin peak 
may lead to false peaks in the Q-function, but can be 
removed. 

The expression for T(t) obtained by CB represents 
in one respect a more general form of the Q-functions 
than that given by PT. Since T(t) is expressed in terms 
of Fro(h), the transform of the individual molecule, it 
need not be calculated, as suggested by the expressions 
given above, in terms of a set of discrete atoms. If, 
for example, a molecule of a protein has been obtained 
at less than atomic resolution, its transform may still 
be calculated by numerical methods from the electron 
density. The possibility of such an extension has been 
suggested previously (Tollin, 1966b) in terms of the 
Q-functions. In this case the quantities CC' and SS'  
in the notation of PT must be obtained by such nu- 
merical integration. At what resolution such a function 
will prove useful is a matter for experiment. 

The Q-functions have now been successfully applied 
to the determination of the structure of a number of 
molecular crystals (for example, Young, Tollin & 
Sutherland, 1968; Tollin, Young & Wilson, 1968). 
Recently the author has applied the Q-function to the 
determination of the position in the unit cell of the 
seal myoglobin molecule (Scouloudi, 1960) once its 
orientation had been determined. The orientation was 
found using the rotation function (Rossmann & Blow, 
1962) to compare the 5.8 A resolution data for seal 
and sperm whale myoglobin (Tollin, 1966b). A report 
of the details of this determination is in preparation. 
However, it is worth noting here that since the protein 
molecule is so large that many atoms are in positions 

which would give rise to non-Harker peaks in the 
Harker section, it is essential in this case to remove 
the origin peak from the Patterson. 

It should be noted that, as Hoppe& Paulus (1967) men- 
tion in a footnote, 'it is possible to translate operations 
with convolution molecules into reciprocal space . . . '  
The Q-functions are closely similar to the reciprocal 
space equivalent of the convolution molecule method 
where the sum of the convolution molecule and the 
Patterson structure is used as the criterion of fit. 

The author is grateful to Professor W. Cochran, for 
his views on the comparison given here. 
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A matrix formalism is developed for calculating the elastically scattered waves diffracted by an infinite 
plane parallel crystal. Introduction of projection operators makes it possible to cover both Laue and 
Bragg reflected waves under the same formalism. 

1. Introduction 

The basic problem to be considered is the solving of 
the time-independent Sehr/Sdinger equation 

(V 2 + k2) ~,(r) = u(r) ~,(r) (1.1) 

for a potential V(r) = (h2/2lOu(r), periodic inside a three- 
dimensional crystal lattice and zero outside, k is the 

wave number and/t  the mass of the particle associated 
with the scalar field ~,(r). In diffraction experiments an 
incident wave falls upon the crystal and an outgoing 
wave scattered by the crystal is detected. This is de- 
scribed more adequately by the integral equation 

1 ( exp ik l r - r ' l  u(r,)~u(r,)d3r, (1-2) 
~u(r)=~,0(r)- -4~ Jr, ....  lr-rTi 


